Прямоугольный треугольник встречается в реальности практически на каждом углу. Знание о свойствах данной фигуры, а также умение вычислять ее площадь, несомненно пригодится вам не только для решения задач по геометрии, но и в жизненных ситуациях.

Геометрия треугольника

В элементарной геометрии прямоугольный треугольник - это фигура, которая состоит из трех соединенных отрезков, формирующих три угла (два острых и один прямой). Прямоугольный треугольник - оригинальная фигура, характеризующаяся рядом важных свойств, которые составляют фундамент тригонометрии. В отличие от обычного треугольника стороны прямоугольной фигуры имеют собственные названия:

  • Гипотенуза - самая длинная сторона треугольника, лежащая напротив прямого угла.
  • Катеты - отрезки, образующие прямой угол. В зависимости от рассматриваемого угла катет может быть прилежащим к нему (образующий этот угол с гипотенузой) или противолежащим (лежащим напротив угла). Для непрямоугольных треугольников катетов не существуют.

Именно соотношение катетов и гипотенузы составляет основу тригонометрии: синусы, тангенсы и секансы определяются как отношение сторон прямоугольного треугольника.

Прямоугольный треугольник в реальности

Данная фигура получила широкое распространение в реальности. Треугольники находят применение в проектировании и технике, поэтому расчет площади фигуры приходится выполнять инженерам, архитекторам и проектировщикам. Форму треугольника имеют основания тетраэдров или призм - трехмерных фигур, которые легко встретить в повседневности. Кроме того, угольник - наиболее простое представление «плоского» прямоугольного треугольника в реальности. Угольник - это слесарный, чертежный, строительный и столярный инструмент, который используется для построения углов как школьниками, так и инженерами.

Площадь треугольника

Площадь геометрической фигуры - это количественная оценка того, какая часть плоскости ограничена сторонами треугольника. Площадь обычного треугольника можно найти пятью способами, используя формулу Герона или оперируя при расчетах такими переменными, как основание, сторона, угол и радиус вписанной или описанной окружности. Самая простая формула площади выражается как:

где a – сторона треугольника, h – его высота.

Формула для вычисления площади прямоугольного треугольника еще проще:

где a и b – катеты.

Работая с нашим онлайн-калькулятор, вы можете вычислить площадь треугольника, используя три пары параметров:

  • два катета;
  • катет и прилежащий угол;
  • катет и противолежащий угол.

В задачах или бытовых ситуациях вам будут даны разные комбинации переменных, поэтому такая форма калькулятора позволяет вычислить площадь треугольника несколькими способами. Рассмотрим пару примеров.

Примеры из реальной жизни

Керамическая плитка

Допустим, вы хотите выполнить облицовку стен кухни керамической плиткой, которая имеет форму прямоугольного треугольника. Для того чтобы определить расход плитки вы должны узнать площадь одного элемента облицовки и общую площадь обрабатываемой поверхности. Пусть вам необходимо обработать 7 квадратных метров. Длина катетов одного элемента составляет по 19 см, тогда площадь плитки будет равна:

Это означает, что площадь одного элемента составляет 24,5 квадратных сантиметра или 0,01805 квадратных метра. Зная эти параметры, вы можете подсчитать, что для отделки 7 квадратных метров стены вам понадобится 7/0,01805 = 387 элементов облицовочной плитки.

Школьная задача

Пусть в школьной задаче по геометрии требуется найти площадь прямоугольного треугольника, зная только то, что сторона одного катета равна 5 см, а величина противолежащего угла составляет 30 градусов. Наш онлайн-калькулятор сопровождается иллюстрацией, на которой указаны стороны и углы прямоугольного треугольника. Если сторона a = 5 см, то ее противолежащий угол - это угол альфа, равный 30 градусов. Введите эти данные в форму калькулятора и получите результат:

Таким образом, калькулятор не только вычисляет площадь заданного треугольника, но и определяет длину прилежащего катета и гипотенузы, а также величину второго угла.

Заключение

Прямоугольные треугольники встречаются в нашей жизни буквально на каждом углу. Определение площади таких фигур пригодится вам не только при решении школьных заданий по геометрии, но и повседневной и профессиональной деятельности.

Треугольник – плоская геометрическая фигура с одним углом равным 90 °. При этом в геометрии очень часто требуется вычислить площадь такой фигуры. Как это сделать, мы расскажем далее.

Самая простая формула определения площади прямоугольного треугольника

Исходные данные, где: a и b – стороны треугольника, выходящие из прямого угла.

То есть, площадь равна половине произведения двух сторон, которые выходят из прямого угла. Конечно, существует формула Герона, используемая для вычисления площади обычного треугольника, но для определения величины необходимо знать длину трех сторон. Соответственно, вам придется рассчитать гипотенузу, а это лишнее время.

Найти площадь прямоугольного треугольника через формулу Герона

Это всем известная и исходная формула, но для этого вам придется посчитать гипотенузу по двум катетам, используя Теорему Пифагора.

В этой формуле: a, b, c – стороны треугольника, а p – полупериметр.

Найти площадь прямоугольного треугольника по гипотенузе и углу

Если в вашей задаче не известен ни один из катетов, то воспользоваться самым простым способом вы не сможете. Для определения величины вам нужно рассчитать длину катетов. Это сделать просто по гипотенузе и косинусу прилежащего угла.

b=c×cos(α)

Узнав длину одного из катетов, по теореме Пифагора вы сможете рассчитать вторую сторону, выходящую из прямого угла.

b 2 =c 2 -a 2

В этой формуле c и a – гипотенуза и катет соответственно. Теперь можете рассчитать площадь по первой формуле. Точно так же можно вычислить один из катетов, имея второй и угол. В таком случае одна из искомых сторон будет равна произведению катета на тангенс угла. Существуют и другие способы вычисления площади, но зная основные теоремы и правила, вы сможете легко найти искомую величину.

Если у вас нет ни одной из сторон треугольника, а имеется лишь медиана и один из углов, то вы сможете вычислить длину сторон. Для этого используйте свойства медианы делить прямоугольный треугольник на два. Соответственно, она может выступать гипотенузой, если выходит из острого угла. Воспользуйтесь теоремой Пифагора и определите длину сторон треугольника, выходящих из прямого угла.


Как видите, зная основные формулы и Теорему Пифагора, вы сможете рассчитать площадь прямоугольного треугольника, имея лишь один из углов и длину одной из сторон.

Как вы можете помнить из школьной программы по геометрии, треугольник – это фигура, образованная из трех отрезков, соединяющихся тремя точками, не лежащими на одной прямой. Треугольник образует три угла, отсюда и название фигуры. Определение может быть и иным. Треугольник можно так же назвать многоугольником с тремя углами, ответ будет так же верным. Треугольники делятся по числу равных сторон и по величине углов в фигурах. Так выделяют такие треугольники, как равнобедренный, равносторонний и разносторонний, а так же прямоугольный, остроугольный и тупоугольный, соответственно.

Формул вычисления площади треугольника очень много. Выбирать, как найти площадь треугольника, т.е. какой формулой воспользоваться, только вам. Но стоит отметить лишь некоторые обозначения, которые используются во многих формулах вычисления площади треугольника. Итак, запоминайте:

S – это площадь треугольника,

a, b, c – это стороны треугольника,

h – это высота треугольника,

R – это радиус описанной окружности,

p – это полупериметр.

Вот основные обозначения, которые могут вам пригодиться, если вы совершенно забыли курс геометрии. Ниже будут приведены наиболее понятные и не сложные варианты вычисления неизвестной и загадочной площади треугольника. Это не сложно и пригодится как вам в домашних нуждах, так и для помощи своим детям . Давайте вспомним, как вычислить площадь треугольника проще простого:

В нашем случае площадь треугольника равна: S = ½ * 2,2 см. * 2,5 см. = 2,75 кв.см. Помните, что площадь измеряется в квадратных сантиметрах (кв.см.).

Прямоугольный треугольник и его площадь.

Прямоугольный треугольник – это треугольник, у которого один угол равен 90 градусам (потому называется прямым). Прямой угол образуют две перпендикулярные линии (в случае с треугольником – два перпендикулярных отрезка). В прямоугольном треугольнике прямой угол может быть только один, т.к. сумма всех углов одного любого треугольника равна 180 градусам. Получается, что 2 других угла должны делить между собой оставшиеся 90 градусов, например 70 и 20, 45 и 45 и т.д. Итак, основное вы вспомнили, осталось узнать, как найти площадь прямоугольного треугольника. Представим, что перед нами вот такой прямоугольный треугольник, и нам необходимо найти его площадь S.

1. Самый простой способ определения площади прямоугольного треугольника высчитывается по следующей формуле:

В нашем случае, площадь прямоугольного треугольника равна: S = 2,5 см. * 3 см. / 2 = 3,75 кв.см.

В принципе, больше нет необходимости выверения площади треугольника иными способами, т.к. в быту пригодится и поможет только этот. Но существуют и варианты измерения площади треугольника через острые углы.

2. Для других способов вычисления необходимо иметь таблицу косинусов, синусов и тангенсов. Посудите сами, вот какие варианты вычисления площадей прямоугольного треугольника еще можно использовать:

Мы решили воспользоваться первой формулой и с небольшими помарками (чертили в блокноте и использовали старую линейку и транспортир), но у нас вышел верный расчет:

S = (2,5*2,5)/(2*0,9)=(3*3)/(2*1,2). У нас вышли такие результаты 3,6=3,7, но с учетом сдвига клеток, этот нюанс нам можно простить.

Равнобедренный треугольник и его площадь.

Если перед вами стоит задача вычислить формулу равнобедренного треугольника, то проще всего воспользоваться главной и как считается классической формулой площади треугольника.

Но для начала, перед тем, как найти площадь равнобедренного треугольника, узнаем, что это за фигура такая. Равнобедренным треугольником называется треугольник, у которого две стороны имеют одинаковую длину. Эти две стороны называются боковыми, третья сторона называется основанием. Не путайте равнобедренный треугольник с равносторонним, т.е. правильным треугольником, у которого все три стороны равны. В таком треугольнике нет особых тенденций к углам, точнее к их величине. Однако углы у основания в равнобедренном треугольнике равны, но отличаются от угла между равными сторонами. Итак, первую и главную формулу вы уже знаете, осталось узнать, какие еще формулы определения площади равнобедренного треугольника известны.

В зависимости от вида треугольника выделяют сразу несколько вариантов нахождения его площади. К примеру, для вычисления площади прямоугольного треугольника используется формула S= a * b / 2, где а и b - это его катеты. Если же требуется узнать площадь равнобедренного треугольника, то необходимо делить на два произведение его основания и высоты. То есть, S= b*h / 2, где b – это основание треугольника, а h – его высота.

Далее, может понадобиться расчет площади равнобедренного прямоугольного треугольника. Здесь приходит на помощь следующая формула: S= a* а / 2, где катеты «а» и «а» – обязательно должны быть с одинаковыми значениями.

Также, нам часто приходится вычислять площадь равностороннего треугольника. Она находится по формуле: S= a * h/ 2, где a – сторона треугольника, и h – его высота. Или по этой формуле: S= √3/ 4 *a^2, где a - сторона.

Как находить площадь прямоугольного треугольника

Вам нужно найти площадь прямоугольного треугольника, но при этом в условии задачи не указаны размеры сразу двух его катетов? Тогда этой формулой (S= a * b / 2) мы не сможем воспользоваться напрямую.

Рассмотрим несколько возможных вариантов решения:

  • Если Вам неизвестна длина одного катета, но даны размеры гипотенузы и второго катета, то обращаемся к великому Пифагору и по его теореме (a^2+b^2=c^2) высчитываем длину неизвестного катета, затем используем ее для расчета площади треугольника.
  • Если дана длина одного катета и градусный наклон угла противолежащего ему: находим длину второго катета по формуле - a=b*ctg(C).
  • Дано: длина одного катета и градусный наклон угла прилежащего к нему: для нахождения длины второго катета применяем формулу - a=b*tg(C).
  • И последнее, дано: угол и длина гипотенузы: вычисляем длину обеих его катетов, по таким формулам - b=c*sin(C) и a=c*cos(C).

Как находить площадь равнобедренного треугольника

Площадь равнобедренного треугольника можно очень легко и быстро найти по формуле S= b*h / 2, но, при отсутствии одного из показателей, задача значительно усложняется. Ведь необходимо выполнять дополнительные действия.

Возможные варианты задач:

  • Дано: длина одной из боковых сторон и длина основания. Находим через теорему Пифагора высоту, то есть длину второго катеты. При условии, что длина основания, разделенная на два, является катетом, а изначально известная боковая сторона – гипотенузой.
  • Дано: основание и угол между боковой стороной и основанием. Вычисляем по формуле h=c*ctg(B)/2 высоту (не забываем сторону «c» разделить на два).
  • Дано: высота и угол, который был образован основанием и боковой стороной: применяем формулу c=h*tg(B)*2 для нахождения высоты, и полученный результат умножаем на два. Далее вычисляем площадь.
  • Известна: длина боковой стороны и угол, который образовался между ним и высотой. Решение: используем формулы - c=a*sin(C)*2 и h=a*cos(C) для нахождения основания и высоты, после чего считаем площадь.

Как найти площадь равнобедренного прямоугольного треугольника

Если все данные известны, то по стандартной формуле S= a* a / 2 вычисляем площадь равнобедренного прямоугольного треугольника, если же в задаче не указаны некоторые показатели, то выполняются дополнительные действия.

Например: нам не известны длины обеих сторон (мы помним, что в равнобедренном прямоугольном треугольнике они равны), но дана длинна гипотенузы. Применим теорему Пифагора для нахождения одинаковых сторон «a» и «a». Формула Пифагора: a^2+b^2=c^2. В случае с равнобедренным прямоугольным треугольником она преобразовывается в такую: 2a^2 = c^2. Получается, чтобы найти катет «а», нужно длину гипотенузы поделить на корень из 2. Результат решения и будет длинной обеих катетов равнобедренного прямоугольного треугольника. Далее находим площадь.

Как найти площадь равностороннего треугольника

С помощью формулы S= √3/ 4*a^2 можно легко высчитать площадь равностороннего треугольника. Если известен радиус описанной окружности треугольника, то площадь можно найти по формуле: S= 3√3/ 4*R^2, где R - радиус окружности.